Mempelajari Sistem Informasi Geografi (SIG) atau Geopraphical Information System (GIS) harus diawali dengan pengertian yang cukup mengenai peta sebagai media visual semua fitur dipermukaan bumi serta perkembangan analisis spatial mulai dari metode manual sampai menggunakan sistem digital. GIS berkembang dari perkembangan penggunaan peta multi layer untuk analisis dan perkembangan teknologi computer. Pemahaman akan konsep dasar pemetaan, prinsip dasar proyeksi peta dan perkembangan pemanfaatan GIS akan mempermudah pemahaman lebih lanjut mengenai penggunaan GIS dalam berbagai bidang, terutama bidang-bidang yang terkait dengan ruang.
Saat ini sebagai sebuah sistem informasi, GIS digunakan dihampir semua sektor karena setiap sektor pada umumnya akan terkait dengan aspek keruangan atau lokasi. GIS pun mengalami perkembangan, dari hanya kemampuan visualisasi sampai ketingkat analisis yang cukup kompleks dalam menghasilkan informasi yang dibutuhkan dalam pengambilan keputusan.
Prinsip-prinsip Dasar Pemetaan
Kartografi merupakan ilmu yang mempelajari mengenai penggambaran peta permukaan bumi. Wikepedia menyebutkan Kartografi (atau pembuatan peta) adalah studi dan praktik membuat peta atau globe. Peta secara tradisional sudah dibuat menggunakan pena dan kertas, tetapi munculnya dan penyebaran komputer sudah merevolusionerkan kartografi. Beberapa kamus asing menyebutkan cartography as art and science of representing a geographic area graphically, usually by means of a map or chart. Political, cultural, or other nongeographic features may be superimposed.
Kartografi dapat dikatakan merupakan disiplin ilmu yang sudah ada sejak jaman dulu kala bahkan pada masa prasejarah katografi telah digunakan oleh manusia untuk menggambarkan wilayah teritori-nya, wilayah perburuan serta wilayah untuk mencari ikan. Pada masa babilonia peta dunia digambarkan sebagai wilayah datar, Ptolemy pada abad kedua telah mengembangkan suatu bentuk bumi dalam bentuk spherical. Peta-peta yang dibuat pada abad pertengahan menggunakan model yang digunakan oleh Ptolemy.
Terdapat asosiasi kartografi internationalatau International Cartographic Association atau ICA yang didirikan pada tanggal 9 June 1959, di Bern, Switzerland. Kartografi berkembang dari penggambaran permukaan bumi dengan pena diatas kertas dengan penggambaran secara digital melalui program computer (program CAD dan atau GIS). Perkembangan ini dalam bidang kartografi ini yang kemudian menjadi GIS. Meskipun demikian dalam mempelajari GIS harus terlebih dahulu mempelajari dasar-dasar kartografi. Dasar dari kartografi adalah dengan mempelajari pengertian dan konsep dasar mengenai peta.
Peta merupakan gambaran permukaan bumi yang dituangkan dalam bidang datar. Menurut ICA peta adalah gambaran konvensional yang mengambarkan elemen-elemen yang ada dipermukaan bumi dan gejala-gejala dari elemen-elemen yang digambarkan tersebut.
Peran peta adalah untuk menggambarkan posisi, menggambarkan ukuran dan menggambarkan bentuk-bentuk dari fenomena yang digambarkan dalampeta tesebut. Peta memiliki peran yang beragam dan terus berkembang peran awal dari peta adalah untuk sarana informasi dari pembuat peta ke penggunanya yang bertujuan untuk mengkomunikasikan posisi suatu tempat dan digunakan untuk navigasi. Peta kemudian berkembang menjadi dasar untuk analisis semua fenomena yang ada dalam permukaan bumi dalam kaitan dengan aspek keruangan, pada tahapan ini peta dapat digunakan untuk menghitung suatu fenomena, membuat prediksi berdasarkan keterkaitan fenomena keruangan dan pada akhirnya menjadi alat untuk analisis berbagai hal yang terkait dengan keruangan.
Ada berbagai jenis peta yang bisa dibedakan berdasarkan beberapa kategori seperti berikut:
- Berdasarkan sekala peta
Peta dapat dibuat dalam sekala yang detail dan sekala yang tidak detail. Semakin detail sekala peta maka akurasi peta akan semakin baik dan gambaran object yang ada dalam peta juga semakin mirip dengan kondisi sebenarnya.
- Berdasarkan isi yang ada dalam peta
Berdasarkan isi peta maka dapat dibedakan atas peta dasar dan peta tematik. Peta dasar merupakan peta yang dibuat untuk menggambarkan kondisi umum suatu wilayah dan menggambarkan feature-feature seperti sungai, jalan, kontur/garis ketinggian, batas administrasi, lokasi-lokasi penting seperti pusat pemukiman, dan gambaran tutupan lahan secara general.
Peta tematik bisa sangat beragam dan digambarkan dengan menonjolkan aspek tertentu sesuai dengan tujuan pembuatan peta. Peta tematik misalnya peta penggunaan tanah, peta jenis tanah, peta geologi, peta curah hujan, dll.
Untuk membuat peta terdapat kaidah kartografi yang harus dipenuhi, bahwa peta harus membuat penggunanya mampu membaca peta tersebut dengan muda. Untuk mempermudah membaca peta maka dalam membuat peta harus memenuhi syarat minimal seperti adanya judul, sekala, arah mata angin dan legenda peta.
Komponen-komponen yang terdapat dalam peta adalah:
– Judul Peta
– Sekala
– Penunjuk Arah Mata Angin
– Legenda/Keterangan symbol pada peta
– Sistem Proyeksi/Sistem Koordinat dan Datum
– Sumber Data dan waktu pengambilan/tahun
– Indeks Lokasi
Proyeksi Peta dan Sistem Koordinat
Proyeksi peta merupakan hal yang penting untuk dipelajari sebagai dasar untuk memahami bagaimana peta ditampilkan dari kondisi permukaan bumi yang melengkung seperti bola kedalam bentuk datar.
Terdapat ratusan system proyeksi peta yang berbeda. Proses mentransfer informasi dari bumi ke peta menyebabkan setiap proyeksi untuk mengalami distorsi setidaknya satu aspek dari dunia nyata – baik bentuk, area, jarak , atau arah.
Setiap proyeksi peta memiliki kelebihan dan kekurangan , proyeksi yang tepat untuk peta tergantung pada skala peta, dan pada tujuan yang akan digunakan. Misalnya, ada system proyeksi mungkin memiliki distorsi atau penyimpangan yang besar jika digunakan untuk memetakan seluruh negeri, tetapi mungkin pilihan yang sangat baik untuk skala besar (rinci) misalnya untuk peta dari provinsi atau kabupaten. Sifat dari suatu proyeksi peta juga dapat mempengaruhi beberapa fitur desain peta. Beberapa proyeksi yang baik untuk daerah-daerah kecil, ada yang baik untuk daerah pemetaan yang membentang dari timur ke barat, dan beberapa lebih baik untuk daerah pemetaan dengan areal yang membentang dari utara ke selatan. Beberapa proyeksi memiliki sifat khusus, misalnya, proyeksi Mercator memiliki garis garis bantu lurus dan karena itu sangat baik untuk navigasi karena dengan garis bantu ini program kompas lebih mudah untuk menentukan arah.

Bagaimana tampilan Artartika yang sebenarnya dalam system Proyeksi Robinson[1]
Terdapat 4 kategori system proyeksi menurut (PeterH. Dana-Colorado University)yang terdiri atas[2]:
- Silindris
- Conic/Kerucut
- Azimuthal
- Sistem lain seperti system yang tanpan diproyeksikan , juga system yang menggabungkan beberapa metode.
Klasifikasi Proyeksi dibedakan berdasarkan karakteristik distorsi
Proyeksi yang mempertahankan ukuran relatif akurat disebut wilayah yang sama , atau proyeksi setara. Proyeksi ini digunakan untuk peta yang menunjukkan peta distribusi atau fenomena yang menekankan pada akurasi peta. Contohnya adalah dan proyeksi proyeksi Albers Equal-Area Conic.
Sebuah proyeksi Azimuthal Equal – area The Atlas Nasional Amerika Serikat menggunakan proyeksi Lambert Azimut Equal – area untuk menampilkan informasi dalam online Map Maker . Selain sifat yang sama – wilayahnya , proyeksi ini juga menunjukkan arah yang benar dari titik tengah peta . Ini berarti bahwa proyeksi bekerja dengan baik untuk daerah pemetaan yang memiliki jarak yang hamper sama dari titik pusat, seperti Amerika Utara atau wilayah seperti Australia.
Proyeksi Mercator digunakan pada Atlas dan Peta Dunia. Proyeksi Mercator adalah proyeksi yang mempertahankan hubungan sudut dan bentuk yang akurat di area yang kecil dan disebut sebagai proyeksi konformal. Proyeksi ini digunakan di mana hubungan sudut penting, seperti untuk peta-peta navigasi atau meteorologi . Contohnya adalah proyeksi Mercator dan proyeksi Lambert Conformal Conic. The US Geological Survey menggunakan proyeksi konformal untuk banyak peta topografi -nya .
Proyeksi yang mempertahankan jarak yang akurat dari pusat proyeksi atau sepanjang diberikan garis disebut equidistant projection atau proyeksi berjarak sama. Proyeksi ini digunakan untuk radio dan pemetaan seismik dan untuk navigasi. Contohnya adalah proyeksi Repetitively Conic dan proyeksi persegi panjang. Contoh Proyeksi Azimut Repetitively adalah proyeksi yang digunakan pada peta yang dijadikan sebagai lambang PBB .
Proyeksi yang mempertahankan arah yang akurat ( dan karena itu hubungan angular ) dari titik pusat diberikan disebut azimut atau proyeksi zenithal. Proyeksi ini digunakan untuk grafik aeronautika dan peta lain di mana hubungan directional penting . Contohnya adalah proyeksi gnomonic dan proyeksi Lambert Azimut Equal – area .
Proyeksi peta dapat menggabungkan beberapa karakteristik ini , atau mungkin suatu kompromi yang mendistorsi semua sifat-sifat bentuk , area, jarak , dan arah, dalam beberapa batas yang dapat diterima . Contoh proyeksi kompromi adalah proyeksi Winkel Tripel dan proyeksi Robinson , sering digunakan untuk menggambarkan peta dunia .
Proyeksi Peta juga dapat diklasifikasikan berdasarkan bentuk permukaan yang dapat dikembangkan yang permukaan bumi diproyeksikan . Sebuah permukaan yang dapat dikembangkan adalah bentuk geometris sederhana yang mampu diratakan tanpa peregangan , seperti silinder, kerucut, atau plane. Cylindrical proyeksi menunjukkan singgung di baris yang dipilih dan garis potong sepanjang dua baris .
- Proyeksi Silinder
Misalnya, proyeksi silinder proyek informasi dari bola bumi ke silinder . Silinder dapat berupa bersinggungan dengan bumi sepanjang garis yang dipilih , atau mungkin sekan ( berpotongan Bumi ) sepanjang dua baris . Bayangkan bahwa setelah permukaan bumi diproyeksikan , silinder membukanya untuk membentuk permukaan datar. Garis-garis di mana silinder bersinggungan atau secant adalah tempat dengan distorsi minimal.
Proyeksi mercator melintang dan miring pada silinder dan peta. Proyeksi Mercator dibuat menggunakan silinder singgung di wilayah khatulistiwa. Sebuah proyeksi Transverse Mercator dibuat menggunakan silinder yang bersinggungan dengan meridian yang dipilih. Sebuah proyeksi Oblique Mercator dibuat menggunakan silinder yang bersinggungan sepanjang lingkaran besar selain khatulistiwa atau meridian .
- Proyeksi Polyconic
Proyeksi Polyconic adalah proyeksi kerucut proyek informasi dari Bumi bulat ke kerucut yang baik bersinggungan dengan Bumi pada paralel tunggal, atau yang ada garis potong di dua paralel standar. Setelah proyeksi selesai , kerucut membukanya untuk membentuk permukaan datar. Garis-garis di mana kerucut bersinggungan atau secant adalah tempat dengan distorsi minimal. Proyeksi polyconic menggunakan serangkaian kerucut untuk mengurangi distorsi.
- Proyeksi Planar
Proyeksi mengubah bidang ke bentuk bidang datar. Bidang datar ini dapat berupa garis bersinggungan atau garis potong.
Koordinat Peta
Sistem koordinat memungkinkan peta atau data spatial menggunakan lokasi yang sama untuk proses integrasi dengan data spatial lainnya. Sebuah sistem koordinat adalah sistem referensi yang digunakan untuk mewakili lokasi peta atau fitur geografis, citra, dan hasil observasi seperti lokasi GPS dalam kerangka geografis yang sama.
Setiap sistem koordinat didefinisikan oleh:
- Kerangka pengukurannya, baik itu geografis (di mana koordinat bumi diukur dari pusat bumi) atau planimetris (dimana koordinat bumi diproyeksikan ke permukaan datar dua dimensi).
- Satuan ukuran (biasanya meter atau feet untuk data yang sudah diproyeksikan atau jika dengan sistem koordinat menggunakan derajat desimal untuk lintang-bujur).
- Definisi proyeksi peta untuk data dengan system koordinat yang sudah diproyeksikan.
- Sifat sistem pengukuran lain seperti spheroid referensi, datum, dan parameter proyeksi seperti satu atau lebih paralel standar, pusat meridian, dan kemungkinan pergeseran arah x dan y.
Ada dua jenis umum sistem koordinat yang digunakan dalam GIS :
- Sistem koordinat global menggunakan lintang – bujur. Ini sering disebut sebagai sistem koordinat geografis.
- Sistem Koordinat Proyeksi yang didasarkan pada jenis proyeksi peta yang digunakan seperti Mercator, Albers Equal Area, atau Robinson, dll. Sistem ini memproyeksikan gambaran permukaan bumi ke koordinat dua dimensi koordinat Cartesian. Sistem Koordinat proyeksi kadang-kadang disebut sebagai proyeksi peta.
Sistem koordinat (baik geografis atau diproyeksikan) menyediakan kerangka kerja untuk mendefinisikan lokasi dunia nyata. Di ArcGIS , sistem koordinat yang digunakan sebagai metode untuk secara otomatis mengintegrasikan lokasi geografis dari dataset yang berbeda ke dalam koordinat kerangka umum untuk tampilan dan analisis . ArcGIS secara otomatis mengintegrasikan dataset yang sistem koordinat dikenal. JIka data-data yang digunakan diasumsikan telah menggunakan system koordinat yang terdefinisi dengan baik maka ArcGIS otomatis dapat mengintegrasikan dataset dengan data set lain dengan memproyeksikan data tersebut secara cepat dan otomatis ke dalam kerangka kerja yang sesuai untuk pemetaan, visualisasi 3D , analisis, dan sebagainya. Jika dataset tidak memiliki referensi spasial , mereka tidak dapat dengan mudah diintegrasikan.
Sebuah referensi spasial di ArcGIS adalah serangkaian parameter yang mendefinisikan sistem koordinat dan sifat spasial lainnya untuk masing-masing dataset dalam geodatabase. Sudah biasa bahwa semua dataset untuk daerah yang sama ( dan dalam geodatabase yang sama ) menggunakan definisi referensi spasial yang sama.
Konsep Dasar GIS
Pengertian GIS (Geographical Information System) atau kadang disebut dengan Sistem Infomasi Geografis (SIG) ada banyak sekali variasi tetapi pengertian dasarnya adalah sebuah sistem informasi berbasis data spatial. ESRI menterjemahkan GIS sebagai integrasi antara hardware, software, dan data untuk mengambil, mengelola, analisis dan menampilkan informasi dengan referensi geografis[3]. GIS memungkinkan untuk menampilkan, memahami, mempertanyakan, menterjemahkan dan menampilkan data dalam banyak cara untuk kemudian memunculkan keterkaitan/hubungan, pola dan trend dalam bentuk peta, atlas, laporan dan juga chart.
Perkembangan GIS merupakan perkembangan kartografi itu sendiri,berawal dari proses yang dilakukan secara manual dengan penggambaran diatas kertas, perkembangan teknologi computer memungkinkan proses dilakukan secara digital. Istilah GIS pertama kali diperkenalkan tahun 1967 oleh yang mengembangkan Canada Geographic Information System in 1967. Kegiatan yang sama dilakukan juga di hardvad di tahun 60-an dengan mengembangkan lab yang dikenal dengan Harvard’s Laboratory of Computer Graphics and Spatial Analysis in the 1960s. Era computer yang dimulai tahun 60-an menjadi awal dalam perkembangan GIS.
Komponen-komponen dalam GIS terdiri atas hardware,software, data dan brainware. Setiap komponen memiliki peran yang besar dalam pengembangan dan aplikasi GIS sebagai sebuah system yang mampu memberikan masukan dalam banyak aplikasi pengambilan keputusan.
Hardware
Hardware dalam GIS sangat dipengaruhi oleh perkembangan dibidang informasi teknologi, perkembangan yang pesat dibidang IT dengan munculnya personal computer dan muncullnya prosesor yang lebih cepat, kapasitas penyimpanan data digital yang lebih besat, system online dan juga perkembangan dibidang remote sensing dan GPS merupakan aspek dalam GIS yang mampu mempercepat proses dan selanjutnya mempercepat kemajuan dalam aplikasi GIS.
Software
Ada banyak sekali software GIS yang berkembang, perkembangan ini dilakukan oleh lembaga pendidikan, swasta dan juga oleh non swasta dengan berkembanganya aplikasi open source yang dilakukan tanpa adanya lembaga tetapi dengan menggunakan jaringan individu.Software GIS misalnya software yang dikeluarkan oleh ESRI, MapInfo, Idrisi, Ilwis, dll.
Data
Data dalam GIS adalah data spatial atau data dengan referensi koordinat diatas permukaan bumi.Perkembangan teknologi dibidang remote sensing, GPS dan pengukuran geodesi merupakan factor-faktor yang mendukung perkembangan pengadaan data digital spatial yang digunakan dalam aplikasi GIS.
Brainware/Sumberdaya Manusia
Komponen ini adalah komponen yang paling penting dalam GIS, adanya sumberdaya manusia yang mengembangkan, mengaplikasikan GIS menjadi factor utama yang menjadikan GIS cepat berkembang dan dapat digunakan pada banyak sekali aplikasi. Sumberdaya manusia juga mengembangan teknik-teknis dan metode untuk analisis yang memungkinkan terciptanya informasi spatial yang sangat penting dalam pengambilan keputusan berbasis ruang.
ESRI menambahkan komponen yang disebut dengan Workflow atau alur kerja yang didefiniskan sebagai proses pengerjaan dengan GIS. Ini menjadi komponen karena pada dasarnya setiap kegiatan yang dilakukan dengan GIS harus dimulai dengan menyusun alur pekerjaan,kerangka kerja dan juga metode-metode yang akan digunakan.
Sangat penting untuk mempelajari konsep pendekatan geografi yang merupakan pengetahuan dasar mengenai bagaimana melakukan suatu pengambilan keputusan berdasarkan kondisi spatial yang ada.
Secara singkat pendekatan ini hanya terdiri atas 3 alur dasar penting yaitu:
Evaluate/Melakukan Evaluasi/Kajian
|
Alur menjadi dasar dalam menggunakan GIS sebagai alat dalam pengambilan keputusan yang didasari atas fakta dan analisis yang valid.
Pendekatan geografi mampu menjawab semua pertanyaan yang menggunakan data-data keruangan. Pertanyaan dimana lokasi yang paling macet di Jakarta? Atau pertanyaan dimana lokasi yang paling strategis untuk mendirikan perumahan? Dimana lokasi habitat orangutan? Semua adalah pertanyaan-pertanyaan yang bisa dijawab dengan pendekatan geografi. Pada perkembangannya pertanyaan yang lebih kompleks seperti dimana paling menguntungkan untuk mendirikan ATM atau dimana lokasi yang paling sesuai untuk penaman kelapa sawit yang memperhatikan aspek keberlanjutan lingkungan bisa dijawab dengan menggunakan pendekatan geografi.
GIS berkembang untuk memberikan pemahama akan fenomena-fenomena yang ada di permukaan bumi. Alur berikut menggambarkan bagaimana GIS berawal sebagai alat menampilkan data sampai kemudian memberikan pengertian mengenai aspek keruangan.
Menggapa GIS?
GIS digunakan secara luas karena memberikan keuntungan dan nilai tambah jika dibandingkan dengan menggunakan system pemetaan manual. Adapun keuntungan menggunakan GIS Antara lain:
- Efesiensi biaya
Menggunakan GIS memang membutuhkan investasi di awalnya. Tapi ketika system sudah berjalan dan kemudian digunakan secara konsisten, maka akan lebih efesien dibandingkan dengan menggunakan system manual. Penggunaan GIS dalam beberapa aplikasi akan mengurangi biaya secara signifikan, misalnya menggunakan GIS untuk pemetaan kawasan hutan akan jauh lebih murah jika dilakukan dengan survey lapang detail ke masing-masing lokasi.
- Pengambil keputusan yang lebih baik
Beberapa pengambilan keputusan seperti alokasi kesesuaian lahan, perencanaan tata ruang dilakukan dengan GIS akan memberikan keputusan yang lebih baik. Di Indonesia banyak kegiatan berbasis informasi geografis tidak dilakukan dengan menggunakan GIS, akibatnya adalah keputusan yang diambil kemudian salah, misalnya penentuan alokasi ruang kawasan budidaya dilakukan tanpa menggunakan GIS, ijin pengelolaan kawasan pemukiman diberikan pada kawasan yang merupakan kawasan pertanian yang bagus. Akibatnya adalah produktifitas pertanian menurun dan secara ekonomi jangka panjang akan sangat merugikan.
- Mempermudah untuk dikomunikasikan
Dengan GIS dan perkembangan internet, maka informasi spatial yang dihasilkan dari analisis GIS dapat dengan mudah di share melalui internet.
Lebih baik dalam menyimpan informasi geografis
GIS merupakan system informasi berbasis data digital, karena itu data-data spatial seperti peta lebih mudah disimpan dalam format digital dibandingkan dengan format manual yang membutuhkan ruang yang besar serta membutuhkan maintenance yang lebih sulit.
- Lebih mudah dikelola
Data spatial dalam GIS sangat mudah untuk dikelola, dengan menerapkan pengelolaan data yang baik, dengan menggunakan metadata, dengan menggunakan system pencarian yang baik, maka data spatial dalam GIS dengan mudah dikelola, dipanggil kembali,diperbaharui dan ditampilkan kembali.
Pengenalan Penggunaan Aplikasi GIS Dalam Berbagai Bidang
Aplikasi GIS berkembang pesat pada banyak sector, ketika GIS pertama kali digunakan hanyak sektor tertentu yang menggunakan seperti untuk keperluan navigasi, transportasi, perencanaan dan militer. Perkembangan selanjutnya GIS diaplikasikan dalam kegiatan yang sebelumnya tidak terpikirkan dengan menggunakan GIS seperti perbankan, pariwisata, pemerintahan,dll.
Mengenal aplikasi GIS dalam berbagai bidang akan membuka wawasan untuk memahami bahwa GIS dapat digunakan mulai dari menampilkan data sampai menjadi pengetahuan yang dapat digunakan dalam pengambilan keputusan. Sebagai bahan pembelajaran berikut adalah beberapa contoh aplikasi GIS dalam berbagai bidang berikut ini.
Aplikasi GIS Pada Bidang Pemerintahan
Aplikasi GIS pada sector pemerintahan digunakan pada tingkatan nasional sampai pada tingkatan local seperti kabupaten dan provinsi. Pada sector ini bidang-bidang pemerintahan seperti pertanian, pekerjaan umum, perencanaan wilayah dan pembangunan ekonomi.
Perkembangan aplikasi GIS disadari sebagai investasi oleh pemeintah yang memungkinkan peningkatan efesiensi, mengurangi biaya, peningkatan koordinasi dan tentunya peningkatan akuntabilitas dan transparansi. Penggunaan GIS pada sektor pemerintahan di Indonesia masih banyak dilakukan pada tingkat pusat,penggunaan pada tingkat local harus didorong untuk meningkatkan kinerja dan layanan serta sangat berguna dalam berbagai aspek perencanaan.
Aplikasi GIS Bidang Bisnis
Dalam bidang bisnis GIS berkembang pesat pada penerapan dibidang perbankan, marketing, pengelolaan asset, asuransi, real estate, media/pers dan retail. Pada bidang-bidang ini pengambilan keputusan yang sebelumnya tidak dilakukan dengan menggunakan aplikasi GIS, mulai dilakukan dengan menggunakan GIS sebagai alat bantu dalam pengambilan keputusan mengenai bisnis.Misalnya pertanyaan: Dimana menempatkan lokasi ATM yang paling sesuai dan menguntungkan? Jawaban untuk pertanyaan ini sudah dapat dilakukan dengan menggunakan GIS.
Kompetesi yang semakin tinggu dalam bidang bisnis menyebabkan perlunya pemahaman spatial yang mampu menjelaskan mengenai keterkaitan antara lokasi dengan masing-masing kegiatan bisnis yang dilakukan. Pengambilan keputusan yang terkait dengan konsumen, bisa lebih baik lagi jika digambarkan secara spatial dengan GIS.
Aplikasi GIS Pada Bidang Pengelolaan Sumberdaya Alam
Sektor pengelolaan sumberdaya alam merupakan sector yang paling banyak menggunakan GIS sebagai alat bantu dalam melakukan analisis keruangan. Aplikasi GIS dalam sektor ini antara lain; pertanian, kehutanan, pertambangan, pengelolaan air, konservasi, sampai perubahan iklim.
Aplikasi GIS dalam bidang-bidang pengelolaan sumber daya alam banyak dilakukan karena bidang-bidang dalam NRM merupakan bidang-bidang yang menggunakan data dan informasi spatial dalam kegiatan yang dilakukan. Misalnya dalam bidang pertanian aplikasi GIS digunakan untuk analisis kesesuaian tanaman dalam pengembangan pertanian.
Aplikasi GIS dalam aplikasi landuse merupakan salah satu aplikasi dalam GIS yang banyak digunakan. Aplikasi ini digunakan dibanyak negara dalam menentukan pola penggunaan lahan yang paling sesuai. Dalam aplikasi ini digunakan data-data spatial mulai dari data fisik seperti morfologi (ketinggian, lereng), geologi, jenis tanah, iklim (besaran curah hujan, lamanya musim hujan), hidrologi (DAS, sungai) dan land cover. Analisis yang dilakukan dengan data kondisi fisik kemudian dianalisis juga dengan menggunakan data sosial dan ekonomi seperti penduduk (jumlah dan sebaran), prsarana (jaringan jalan, terminal, pelabuhan), aksesibilitas (jarak tempuh), pasar (lokasi pasar). Analisis dilakukan dengan berbagai metode mulai dari overlay, scoring, network, dll. Hasil dari analisis ini digunakan dalam pengambilan kebijakan mengenai alokasi landuse yang paling tepat.
Aplikasi dalam bidang konservasi juga merupakan salah satu aplikasi yang cepat berkembang, berbagai aspek dalam konservasi melibatkan informasi lokasi/ruang, misalnya analisis untuk penentuan habitat, analisis untuk mengetahui kawasan lindung serta pada pengelolaan kawasan yang memang harus dilakukan terlebih dahulu dengan memetakan kawasan dan isi (biodiversitas) yang ada di dalamnya. Beberapa pendekatan konservasi seperti Ecoregion, HCV(F), ICDP merupakan pendekatan-pendekatan yang menggunakan informasi spatial dan memerlukan aplikasi GIS dalam kegiatannya.
TNC telah menggunakan GIS sebagai alat bantu dalam melakukan kegiatan-kegiatan perlindungan lingkungan hidup sejak lama dan juga secara intensif. Beberapa pendekatan yang dipelopori oleh TNC menggunakan GIS dalam menyusun perlindungan dalam tingkat landscape. Aplikasi yang dilakukan oleh TNC misalnya.
Ecoregional Planning
Perencanaan berbasis ecoregion menggunakan GIS untuk melakukan analisis pada tingkat landscape. Perencanaan Ekoregional TNC membahas beberapa masalah yang melekat yang ada dalam perencanaan tata ruang di masa lalu dan saat ini di Kalimantan Timur. Hal ini dilakukan dengan mendefinisikan data yang tersedia pada sekala tertentu dapat diterapkan, jelas menggambarkan terminologi; memproduksi layer peta digital tertentu, dan menerapkan logika dan dokumentasi yang jelas untuk proses pemilihan sistem ekologi target dan spesies, dan peringkat viabilitas dari sistem sasaran. Proses yang dilakukan adalah proses yang transparan, metodis dan berulang. Data akan dimasukkan ke dalam database konservasi dengan masukan dan diskusi diundang dari berbagai pemangku kepentingan, termasuk para ahli lingkungan dan biologis, dan semua tingkat yang tepat dari pemerintah maupun masyarakat setempat.
Marzone
Marzoneatau Marxan with Zone merupakan alat yang digunakan dalam membantu pengambilan keputusan dalam membuat jaringan wilayah lindung dengan menggunakan analisis berdasarkan alokasi pengelolaan sumberdaya alam yang berkelanjutan. Marzone merupakan pengembangan dari Marxan yang telah digunakan sebelumnya dalam berbagai pengambilan keputusan dalam pengeloaan wilayah lindung.
Aplikasi dalam Marzone dikembangkan menjadi extension khusus yang mampu menganalisis data-data spatial seperti fisik wilayah, aspek-aspek lain dan menghasilkan peta yang digunakan dalam strategi konservasi.
Development by Design (DbD)
Merupakan pendekatan yang menggabungkan konservasi berbasis landscape dengan aspek mitigasi. Pendekatan DbD menggunakan aplikasi GIS dalam menentukan wilayah strategis bagi kepentingan konservasi dan kemudian dengan analisis yang lbeih detail dapat menggunakan GIS untuk memperhitungkan dampak-dampak dari satu kegiatan pembangunan dan dengan dampak ini dapat disusun mitigasi dalam rangka mengurangi dampak tersebut.
Like this:
Like Loading...